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We investigate a chain of particlésonds with harmonic interbond and anharmonic intrabond interactions.
In the classical limit we consider a breather solution that is strongly localezeskntially a single-site excita-
tion). For the quantum case we study tunneling of this excitation to a neighboring site. In that case we neglect
the anharmonicity except for the two sites between which the tunneling occurs. Within this model the breather
tunneling reduces to the tunneling in a dimer coupled to two adjacent harmonic chains. Application of Feyn-
man’s path instanton technique yields the tunneling splittiiy For the isolated dimer we reproduce the
exponential factor for the splitting E(?), obtained earlier by a perturbative approach. Assuming the frequency
o of the breather to be much larger than the inverse instanton width we use an adiabatic approximation to
derive AE for the dimer coupled to the harmonic chains. We find thBtcan be obtained from E(? just by
scaling the Planck constant. We argue that independent of the density of states of the harmonic chains
tunneling can never be suppressedyifs large enoughl.S1063-651X98)11407-1

PACS numbgs): 05.30—d, 03.20+i, 63.20.Pw, 63.20.Ry

[. INTRODUCTION solutions of the sine-Gordon equat)anteracting with plas-
mons was recently considered|ibl].
Initiated by early papers of Ovchinniko\], Kosevich Since classical breathers can be localized essentially on

et al. [2], and Takencet al. [3,4] there exists now a clear one site(bond, one can start by considering a system of just
understanding of the generic existence of discrete breathersvo sites (bondg, for example, the dimer discussed in
These classical solutions to the Hamiltonian equations of12,13. Classical trajectories in this system may be not in-
motion are time periodic and spatially localized. They arevariant under permutation of the sit@sonds, whereas the
structurally stable provided the plane wave spectrum oHamiltonian is invariant. Quantization yields pairs of eigen-
small amplitude excitations has finite bounds. This can betates, corresponding to these classical symmetry breaking
achieved by considering a spatial lattice, with degrees ofrajectories, with exponentially small splittings of the
freedom associated to each lattice site. Existence proofgigenenergies.
demonstrate that the existence of these solutions is not re- This dimer model is particularly interesting, because its
stricted to low lattice dimension]. (For reviews on this classical version is an integrable system, due to the existence
subject, seé6,7].) of two integrals of motion that are the total dimer ene&y

A logical step is then to consider the fate of these classicaiind a measuré for the intensity of the classical excitation.
solutions in the presence of quantum fluctuations. We majyhe pairs of eigenstates of the quantum dimer correspond to
think about a quantum object corresponding to a breathetunneling between tori in the classical phase space. This type
solution. Contrary to a classical breather, localized in theof problem has already been studied earlier by several au-
vicinity of a certain lattice site, such a quantum object will thors(see, e.g[14,15)). Two cases were considered that are,
be able to tunnel from site to site, forming a quantumrespectively, dynamical and potential tunneling. The latter is
breather band. Taking into account the coupling of thewhat one usually understands as tunneling, i.e., a quantum
breather to its environmental degrees of freedom mayransition of a particle through a potential barrier in a con-
strongly influence the tunneling probability amplitude. figuration space that is energetically forbidden in classical
Therefore the central issue is to calculate the probability ammechanics, whereas the former corresponds to tunneling in
plitude of the breather intersite tunneling, which will deter-the phase space where no such energy barrier exists. Despite
mine the width of the band. An interesting question may bethe absence of the energy barrier no classical solution of
whether such an effect, known for particle tunneligge, Newton’s equation of motion exist that connects the two tori.
e.g.,[8,9)) as tunneling suppression in the Ohmic case, can In the case of the two tori that appear[it2,13, as will
be observed for the quantum breathers as well. It is worthbe shown in the next section, an effective potential barrier
while mentioning in this context that quantization of solitonscan be defined and the problem of dynamical tunneling can
(other nonlinear objects that are close but certainly differenbe mapped onto a potential tunneling. This becomes possible
from breatherswas discussed in the literature; see, ¢ 10]. since the dimer has two conservation laws. If we were left
Tunneling of fluxons in Josephson junction chaissliton  with just the energy conservation, we would be faced with a

1063-651X/98/581)/3398)/$15.00 PRE 58 339 © 1998 The American Physical Society



340 V. FLEUROV, R. SCHILLING, AND S. FLACH PRE 58

proper dynamical tunneling agaisee[16]). in which the anharmonic terms are omitted. The interaction
The tunneling splitting for all the levels of the dimer was between the dimer and the harmonic bath is given by
calculated in Ref[13]. However, to study a possible delo-
calization of the classical breather due to quantum behavior
one has to investigate an extended system. A step in this
direction was made in the pape6] where a dimer coupled
to a single harmonic oscillator was studied. A consideration The harmonic par2.4) consists of two open ended har-
of an extended system with a macroscopic number of bond&onic chains, each of which can be diagonalized by means
is the principal aim of this paper, which will be organized asof the transformation
follows. The next section introduces an extended model with
N bonds and then shows that subdiving this chain into a
dimer coupled to adjacent harmonic chains may be a good _E
approximation. Section Ill reinvestigates the isolated dimer, n
classically and quantum mechanically, and uses Feynman’s
path integral method in order to derive the exponential factor
that mainly determines the tunneling splitting. The extendedind
model will be studied in Sec. IV, where the main result of
our paper will be derived. The final section contains a dis-
cussion and some conclusions.

H1=C(XoX1+ PoP1+XoX3+ P2pP3)- (2.9

X,LLN; sin q,LL(n—l), —(N,—1)=n=<0

# O xENR singi(n—2),  3<n=Ng+2

5 pLAY singl(n—1), N —1<n<0
pPn=

© | pPAVR singR(n—2), 3<n<Ng+2.
II. MODEL PNy sing,(n=2) R

We are going to consider the quantum tunneling of aThe superscriptd. and R denote the left and right hand
breather in a one-dimensional chain described by the Hamilghains withN, andNg bonds, respectively. The wave num-

tonian bers  gi=mu/(N.-1),u=1,... N, qf=mpul/(Ng
+1),u=1,... Ng, and N;’R are normalization coeffi-
@Wo 2.2, 0 2. 2\2 cients.
H=— XD+ o X
2 2. (Pi+xD) SEi (Pi+xD) Equation(2.4) now reads

+C (XiXi 41 PiPisa)- (2.9) 1 1
oo Hon=52 AL(PL)2+ (x)21+ 5.2 AL (pf)2+ (x)2],
“ “

Here the label numbers the bonds. It will be assumed in (2.6
what follows that the breather is strongly localized and cor-
responds actually to an excitation of only one bond in thisyhere the eigenfrequencies WER=€00+ 2C cosq';L’R. The

chain. Then tunneling will correspond to transferring thisinteraction in the normal coordinates becomes
excitation to a neighboring bond. Since all the other bonds
remain lowly excited during this process we may neglect the
corresponding anharmonic terms in Eg.1). However, the - L L L R R R
anharmonicity in the two bonds participating in the tunneling Ha % Crulxayt Pap) + CulxXut papy). (29
transfer will be fully taken into account. Then the problem
reduces to a consideration of tunneling in a dimer coupled to L Lo R_ R . R
a bath represented by two harmonic chains. The system }g/herecﬂ— _CN# sing, and C#_.CN# sing, . .
described by the Hamiltonian . The problem of_ breather tunneling rgdqces now to inves-
tigating the tunneling transfer of an excitation from one bond
of the dimer to the other under the influence of the harmonic
bath. On one hand this problem differs from the standard
problem of a particle tunneling between two minima in a
double-well potential in the configuration space, since here
we deal with dynamical tunneling from one torus to another
- Wo, 2. 2y, Y, 2. 22 in the phase space. On the other hand there are many simi-
Hd_azzl,Z 2 (PatXe) Tg (PatXo)™| +CXaXot P1p2) Iaritiespin thesg two problems, which will be discusseyd in
(2.3  what follows.

H=Hg+Hpy+Hgq, (2.2

where

represents the dimer of two bon@shosen to be 1 and)?2
which may be strongly excited. The bath is represented by IIl. TUNNELING IN THE DIMER

the remaining part of the chain Tunneling in the dimer described by the Hamiltonidp

(2.3 was studied in detail i112,13. Here we try to ap-
_®o 2.2 proach the problem by means of the path integral technique
Hon=—% +x5)+C + X X
Ph 2 n;l,z (Pt n) ngl,z (XnXn+1F PoPn+1) and obtain some results that will be necessary for our more
(2.9 general problem.
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A. Classical properties H(J1,z,p,). Fixing J; (which is the boson number in our

case leads to an effective one-particle problem. This case

can be finally always described by an effective potential,

y= %[x§+ pg_xi— pf], which will depend on both the total energlyand the chosen
value for the actiord;.]

Multiplying Eq. (3.3) by v it follows that the quantity

The canonical transformation

P2 P1
¢@=arctan— — arctan—,
X2 X1

1 .
=S5+ p3+xi+pil, Ec=3y°+V(y)=—3(E-E)(E-E,)
1 po p1 with
= — —+ .
X=3 arctanx—2 arc:tar}—1 (3.1
allows one to represent the dimer Hamiltonigh3) in the E,=wod+ yJ2/4+CJ, E,=wel+ yJ24—CJ (3.5
form
2 \/\127
— _ 2 | 2
Ha=wol v 5] Ty +2C (2) y"cose. does not vary in timeE, plays the role of the effective en-

(3.20  ergy for the motion described by E(.3). Note thatE,; does
not coincide with the real enerdy of the dimer. They are
Herey andJ play the roles of the coordinates whijeand y even measured in different units.
are the corresponding momenta. The Hamiltoritgndoes The potential3.4) becomes a double-well potential if the
not depend on the momentug) which means that its con- coefficient of they? term is negative. In order to have a
jugate coordinatd is one of the two integrals of motion. The permutation symmetry breaking trajectory the condition
following restrictions should be also applier| <J/2 and

|cp|<7T/2.
The second integral of motion is the total eneEyySince 1 2?2
the Poisson bracket dfandH 4 vanishes, the dimer model is 0>E=—-5E-wod=v|3] - 27

integrable. The momentura is excluded from the Hamil-
tonian equations of motion by means of the energy conser-
vation and the equation has to be satisfied

It follows from Eq. (3.2) that for yJ<2C the choice of
y=——" (3.3 the possible energies is restricted by the conditions

is obtained, which describes motion along the coordigaie

a given energ)E in the potential E,=E=E,, (3.6

2

2
Y
V(y)= 73’4— Y

J 2
E—wOJ—7(§> —2—}y2. (3.4  which implies thatE, is positive in this case. Then only
Y symmetry conserving periodic trajectories are possible. At

Note that the motion described by H8.3) is not exactly ~ ¥9=2C a bifurcation oceurs, and2 fopJ>2C the energy
the same as the motion of a particle in a usual double-welfang€E;<E<E;=wJ+ yJ%/2+C*/y becomes accessible

potential. The difference is due to the fact that the two intel0 Permutation symmetry broken trajectories. These are the
grals of motion, the conserved total ener§yof the dimer conditions for an appearance of permutation symmetry bro-

and the amplitudd, play now the role of parameters. Thus Ken isolated periodic orbits as described in R&8].
the shape of the potenti®l(y) depends explicitly ofE and A permutation symmetry broken trajectory means that the

J, which is a consequence of dealing with the dynamics irsYStem dwells in one of the two wells of the potenti@i4).

the four-dimensional phase space of the dini@his is a Now we are able to consider tunneling fron_1 one minimum of
general property of an integrable system with two degrees df'¢ PotentialV(y) to the other one applying the standard
freedom and a separatrix that separates symmetry noninvafrmulation of the instanton technique in the path integral
ant from symmetry invariant trajectories. The Hamiltonian is@PProach. This will be done first for the isolated dimer and
assumed to be invariant under the discrete symmetry operd1€n for the dimer interacting with the bath.

tion P with P2=1. The two actions); andJ, in one of the
symmetry broken phase space regions parametrize the iso-
lated periodic orbits J;) and its quasiperiodic perturbations
J,, wherew,=dH/3J, vanishes on the separatrix. Perform-  The amplitude of the tunneling transition in the potential
ing now a canonical variable transformation V(y) can be found by calculating the phase space path inte-
{31,352, b1, P2} —1{31,2,¢1,p,} will lead to a Hamiltonian gral[17]

B. Quantum properties
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z= J Dly] f Dl¢] f DL f D[X]E‘XP[HTSZ

—J(t)éc(t)—y(t)éo(mS[y<t),<o(t).a<t>,x<t>]H, 3.7

where
Sy (1), (1), 3(1), x(1)]=S_(T/2)—S_(—T/2)+ S, (T/2) =S, (— T/2)+ Sy,
_ T2
Sd:_f Ha(y(1),e(t),J(1))dt (3.9
—-T/2
and

S.(t)=3[I(1) =2y()]siN2x (D) = ¢(1)].

Note that in contrast to the usual phase space path integral representation, we have performed a partial integration in the
exponent. Choosing the dimer enei§y E; we may consider the tunneling motion between the two minima of the potential
V(y) located aty. = = \JJ%/4— C?/ 2. This means that the integral in the acti@®®) should be calculated using the conditions

that y(T/2)=y(—=T/2)=y, or y_ and J(T/2)=J(—T/2)=J,y. For yJ;>2C the value of], (integral of motion for the

classical pathscharacterizes the particular tunneling process. This procedure corresponds to calculating the splitting due to the
phase space tunneling between the two isolated periodic orbits

y.==\3a-CUY2, =0, I=Jg, x=-(wo+ydolt. 3.9

SinceH, does not depend explicitly op, the path integration ovey and then oved can be carried out straightforwardly.
One can see from this integration that only the paths along wi(igh=J, contribute to the integradl3.7). Then keeping only
the terms relevant to tunneling one obtains

Z~f D[Y]f D[so]exp“i—

T2 )
- _Wy(tm(t)—Hd[y<t>,¢(t>,Jo]H. (310

Switching to the imaginary timet=—i7, one finds forT  which complicates the calculation of the quantum fluctua-

—oo the well-known instanton for the potentied.4) with E tions. Nevertheless, while considering tunneling of a breather

=Ej: interacting with the harmonic bath we will be able to arrive
at a certain conclusion concerning this preexponential factor

JS c2 ch) c? as well.
y(7)= Z—?tan YT Z—?, (3.11)

corresponding to the imaginary time solution of E§.3). . .
Then the tunneling splitting becomes A. Classical properties

IV. BREATHER IN THE 1D CHAIN

AE~e (Uh)Se (3.12 In order to consider tunneling in the 1D chain described

' by the Hamiltonian2.2) we study some of its classical prop-
where the Euclidean action is calculated with the help of theem‘.f’S .f|rst. .TO he more specmc we need to find isolated
: periodic orbits between which the quantum phase space tun-
instanton(3.11), . ) . .

neling occurs. This can be achieved by applying the same

trick as in Refs.[13,16. The system has two integrals of
motion one of which is the total energy, i.e., the Hamiltonian
itself, and the second one is the quantity

2Cy
yJo— \/y235—4C?

Se=—\J5—4C?y*+Jgln

Comparing this result with the results obtained 12,13 1 MR
by the perturbation theory approach by taking into account B=_ 2 (p2+X3).
that J, has to be replaced by its quantized valdg 2i==n,

=nAa, n=0,1,2..., we findthat they coincide up to the

preexponential factor. The latter can be found by properly

accounting for the quantum fluctuations in the above patiHence, we can find isolated periodic orbits by using the con-
integral. Unfortunately, the actiofB.8) contains a kinetic dition VH= VB in the phase space. This condition directly
term proportional to cos, rather than a quadratic form, leads to the equations
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CLR coefficient in the linear time dependence of the momenum
Xy R=—F e Xy, is now renormalized due to the interaction with the bath. We
WA, also obtain the energy
L/R
Pu" = = P2 E=E3+2Jp>, (2 ) C.
NIV ' =E5+ W—\N,)———
oM T =N,

which allow one to eliminate the bath coordinates. Then ap- . ) .
plying also the canonical transformati¢®.1) and assuming of_the system correspondlng to such an isolated orbit. It con-
that the left hand chain is identical to the right hand chain&ins two terms corresponding to the dimer and all the other,

one finds isolated periodic orbits in the form bath, degrees of freedom separately. It is interesting to note
that the energ¥, of the dimer is also a conserved quantity,
y.== ‘/33/4_ C?%v?, =0, J=J;, x=-ot meaning that when moving along this orbit there is no ex-
4.1 change of energy between the dimer and the remaining part
of the chain.
with w defined by the equation
2C2 B. Quantum properties
b
wot 7"]°+% w—X\, & (4.2 Now we will consider how the interaction with the har-

monic bath influences the tunneling in the dimer between the
Comparing this solution with Eq3.9) we find that it has  two isolated orbits(4.1) found in the previous subsection.
the same structure as for the isolated dimer and only théet us calculate the path integral

z=11 |” | s, [ pocon [ puokon [ oo | otebwn [ oty | oren | ot | oo

ijle
Xexp — dt
hl)-tp

—% (XpP5 +XEpR) = Ix— Yo+ Sy, 0.0 x {5} {5t X} (P} ] ] 4.3

where
Sy, @ d AP X PR = S_(T/2) = S_(—= T/ +S,.(T/2) =S, (= T/2) +S,

_ T/2
S f HO,0(0.30. X ORPLOLKEOLPHO Dt 4.4

with the HamiltonianH defined by Eq(2.2). The action(4.4) is calculated using the conditions thd;(—T/2)=leL(T/2)
=xg,, andx}(—T/2)=x3(T/2)=Xxg,, , all other conditions being the same as in the case of the isolated dimer. Note that in Eq.
(4.3) we have taken the trace with respecixp, andxg, .

Integration over the harmonic coordinates is straightforward and the propdag&obecomegsee, e.9.[18])

2= [ Plyw) [ Do) [ Do) [ Dy

i T/2 ) . _
X eXP[gJ s dtf —Ix—yel+Siy,¢,J]+ S Y, e, x]+ SplY, @, d.x] ¢, (4.5

Where§d is given by Eq.(3.8) and

T T
S RrlY. ¢, d x]= Zdtf dt’ VAL r(DAL (1)KL r(t—t")cos ¢ g(t,t")+L g(t—t")sin g g(t,t")] (4.6

=TI -T/2
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with

cosALR(T/2—t))
sin\LRT/2

1
KLr(h)=32 (CY?

and

sin N R(T2—t])
sin N RT/2

1
L r(t)=5sgrt) 2 (C,F)?
M

The action in the propagatdd.5 is rather complicated
and is far from being a quadratic form. It contains also non-
local terms S_gly,¢,J,x] due to the interaction of the
breather with the phonon bath. Their structure, although re-
sembling in many aspects the nonlocal terms in the standard
potential tunneling problemsee, e.g.[8,19)), is now some-
what more complicated. On one hand this is due to the fact
that the integrations over the momenta have not been carried
out. On the other hand the very formulation of the problem is
different. There is an additional pair of conjugated coordi-

natesJ and y, which is important when considering the
Here phase space tunneling. Also we have an additional restriction

L J(T/2)=3(—T/2)=1J,, to be taken into account.
P r(LE)=x(O) = x (1) + [ () —e(t)],

AL r(D)=J(1)/2%y(1);

C. Adiabatic approximation

A direct calculation of the path integral seems hardly pos-
= . . . . . sible unless some approximations are used. In order to un-
Z is the factor due to all the mtegrgt!ons carried out in Eq. ‘derstand what sort of an approximation can be appropriate
(4.5). It also includes terms containing.(£T/2). A de-  phere we need to analyze the equations of motion for the
tailed knowledge o is not important for calculation of the dimer coordinates and momenta that can be obtained by
tunneling splitting. minimizing the action in Eq(4.5):

JH T/2
y—a_;+f JAUNVALDALTKL(E=t)sin g () — Ly (t=t)cos g ()]

- fm/ dt’ VAR(D)AR(t")[Kr(t—t")sin ¢g(t,t’)— L (t—t")cos yr(t,t")]=0, 4.7
—-T/2

H
o+ 6(9_yd_ fm/zdt’ VAL AL(D[K (t—t")cos g (t,t")— L (t—t")sin ¢ (t,t")]

+le2/ dt’ VAR(t")/Ag(t)[Kr(t—t")cos ¢r(t,t’) — Lg(t—t")sin ¢r(t,t’')]=0, 4.9
2

i me dt’ VALDAL (UK (t—t/)sin g (t,t))— L (t—t")cos g (t,t)]

—zfm/zdt’ Ar(DAR(L)[KR(t—t")sin ir(t,t") — Lr(t—t")cos ¢r(t,t')]=0, “9
-T

. GHgq 1 (TR
X+ %_EJTWZdt’ ALt)TALDIKL(t—t)cos g (t,t') — L (t—t')sin gy (t,t)]

1
+§f/:/2dt' VAR ) ARD[Kr(t—t")cos ¢r(t,t’) — Lr(t—t')sin g(t,t')]=0. (4.10

First of all we observe that the isolated periodic orbitswhere the kernel reads
found in Sec. IV A are solutions of the equations of motion.
By substituting one of these isolated orbits, corresponding to
say they, minimum, one obtains the nonlocal action terms

cog N R(TI2—t]) — wlt]]
in the form

H L,R:
sin, T/2

~ 1
Kr(h)=32 (CLY?

T2 T (412
&,R[y,q:,a,x]:AL,Rf dtf ARy a(t—t")
—T/2 —T/2

(41]) andAL:Jo/2+y+ y AR:J0/2_ Y+.



PRE 58 TUNNELING OF A QUANTUM BREATHER IN A ONE-. .. 345

This kernel is similar to the kernels encountered in thedyx(t) again yields only the paths witld(t)=J,. Then
standard configuration space tunneling probldsee, e.g., changing integration variables=t/(1+M,), in the remain-

[8,19)) except for the additional term|t| in the argument of  ing part of the action one obtains the propagator in the form
the cosine function. This term ensures a rapid convergencyp to factors irrelevant to tunneling

of the integrak4.6) regardless of the phonon density of states

providedw is large enough compared de'R, which can be _ _ i(1+Mj)

achieved if yJ,>2C, which is the condition for the very Z~J' D[Y(t)]f D[(P(t)]exp{ B

existence of the breather in our system. It should be men-

tioned, in particular, that the internal breather frequeadn © . L

the kernel makes the logarithmic divergency of the action Xf dt[y(t)¢(t)—Hd[y(t),¢(t),3(t)]]]- (4.17

appearing in the so-called Ohmic case for particle tunneling, o _

as described ifi8], impossible. The propagato@.l@ can be transformed into the propa-
The frequencyw characterizes the isolated periodic orbit. 9ator (4.17 by scaling the Planck constafit-%/(1+M).

Any motion with smaller frequencies can be considered ad his means that the splittings of the quantum breather levels

slow and an adiabatic approximation may be appropriate iﬁ_lue to tunneling in the chalr_1 can_be obtained from the_spllt-

such a case. This holds in particular for the instanton solutiofin@ found for the isolated dimer just by the same scaling.

(3.11) of equations(4.7)—(4.10 (if rewritten in the imagi-

nary time and such an adiabatic approximation may be used V. DISCUSSION

when analyzing the phase space tunneling problem as well.

A more detailed discussion of the applicability of this adia-

batic approximation is given in the next section.

We have studied the tunneling of a localized breather ex-
citation in a chain of particles due to quantum fluctuations.

The rapid convergency of the integrals in the nonIocal'zordtr;'S_I_ﬂurpc’_S(.a vx:edpsed andei(tended versl,lon of a d|m§r
terms of the action ensures that the main contribution is comr-TI10 el. I € oréglna Imer mo he vyasi r(;clent yAlnvestllgate
ing from t—t’ being small. Thus the dependence of thet'@SsICally an quantum mechanicaff$2,13. Assuming

dimer coordinates ot can be approximately represented asthat the breather is mainly Iocal_lzed on gne bond, we re-
placed all the bonds by harmonic ones, except for two of

" : VI them, thus allowing for tunneling from one bond to the other
JE)=IO+IOA=) +- -, under the influence of the remaining harmonic bonds.
For the isolated dimer, i.e., when the harmonic chains and

y(t)=yO+yt-tH+---, their coupling to the dimer are removed, we have applied the
. path integral technique and reproduced the result for the tun-
p(t)—e(t)=e(t)(t—t" )+ -, neling spliting AE(®) obtained earlier within a perturbative
_ approach. This agreement has been achieved for the expo-
X)) =x()=—o(t=t")+ox()(t—t")+---. nential factor, which represents the main contribution to

(413  AE(. Taking the interaction with the harmonic chains into
ccount we have calculated the propagator by use of an adia-
atic approximation. The resul#.17) allows us to find an

equation for the probability amplitude of the breather tunnel-

ing in the chain if we know the probability amplitude for the
isolated dimer. For example, we may use EQl10 in Ref.

" [12] (a more general derivation can be found 13]) derived

Sadzf dt{I(t)(w+Mg)—I(t)(1+ M) Sx(t) perturbatively for the isolated dimer. The quantum number

- n=J/# is the number of bosons that comprise the breather. It
. is the only parameter in this equation containing the Planck
—y()(1+Mp)e(t) —Hgly(t),e(1),I()]}, constant’. Applying the above scaling one arrives at the
(4.14  amplitude for a breather tunneling in the chain,

This expansion is substituted into the action in the expone
of Eq. (4.5 and integration ovet’ is carried out in the limit
T—o, Keeping the leading terms of the expansion the adia
batic approximation for the action is obtained

where ZEC C h-1
c2 AE:( 1)1(?) ’ ®b
n—1)!
Mo=> )\ _"“w (4.15
no wheren=J(1+M,)/%. For large values oh the Stirling
and formula results in
c? 2nC ~ (n—1)y
M= ——. (4.16 AE~ expl —(n—1)In . (5.2
# (0—=N\,) =1 eC

Now all the terms in the actio.14) are local and it can . ) ) ) ) o
be direct|y Compared with the results obtained for the isojt IS readlly seen that the interaction with the bath diminishes

lated dimer. Actually we have now to calculate the propagathe exponential factor due to the increase of thaith re-
tor (3.7) using this new action. First the integration over spect ton (M is always positive This is the same type of
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behavior as predicted ir20] for the influence of the bath on the cosine in Eq(4.12) can be rewritten asA¢’R—w)(T/2
the configuration space tunneling. —It]). Since the breather frequenay>0 must be larger
Here we comment again on the quality of our adiabaticthan the upper edge M@ ;= wo+2C of the phonon band,
approximation. The nonadiabatic corrections in the actiorthere will be a gap, meaning thallL;R—w never becomes
(4.14) are proportional to the quantityl;, Eq.(4.16), which  zero. Consequently, the coupling to the phonon bath results
for w>max\, }=wy+2C can be estimated as inan interaction between the instantons that decays exponen-
M;~C?/w?<1. Direct analysis of the adiabatic expansiontially with “distance” |7— 7’| (wherer is the position of an
(4.13 shows that the next order terms in the actidnf)  instanton and not as a power law|7— 7’| ~2 as is the case
will contain additional powers of the rati®;,s/ @. From Eq.  for the Ohmic damping9,8,19.
(4.2) one finds that the breather frequenays always larger The occurrence of this gap is related to the fact that the
than yJo.  Therefore, the frequency, wins=  breather itself already has its own nonzero frequency
yJo/2\/1—4C? 1232, typical of the instanton is smaller than Since this will also be true for breathers in quite different
the breather frequency at least by a factor of 2. It may betypes of models, e.g., where no anharmonic terms with re-
come especially small near the bifurcation point, whenspect to the momenta exist, we may speculate that tunneling
2C/yJ, is close to one. Hence, we expect the adiabatic exef a breather cannot be generally suppressed even in the
pansion to be quite reasonable if the instanton frequenc@hmic or sub-Ohmic cases.
winst 1S SMall enough compared to the breather frequency Finally, we want to emphasize that the existence of many
It has been shown for the configuration space tunnelingposon bound states has been obtained rigorously only for
that the behavior of the density of states of the harmonic batimtegrable models. Although our present calculation is not a
for frequencies close to zero strongly influences this renorproof of existence of bound states in the semiclassical limit,
malization. In the Ohmic or sub-Ohmic case the coupling tathe finding that the tunneling in the dimer is reduced when
the bath may lead to a suppression of tunneli§ This  considering an infinite chain, yields the right trend to connect
effect, however, does not occur for the phase space tunnelirthese bound states to classical breather solutions.
of the breather for our model Hamiltoni&®.2)—(2.7) even if

the phonon densit'y of states corresponds to the Ohmic case. ACKNOWLEDGMENTS
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