
8, Israel

PHYSICAL REVIEW E JULY 1998VOLUME 58, NUMBER 1
Tunneling of a quantum breather in a one-dimensional chain
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We investigate a chain of particles~bonds! with harmonic interbond and anharmonic intrabond interactions.
In the classical limit we consider a breather solution that is strongly localized~essentially a single-site excita-
tion!. For the quantum case we study tunneling of this excitation to a neighboring site. In that case we neglect
the anharmonicity except for the two sites between which the tunneling occurs. Within this model the breather
tunneling reduces to the tunneling in a dimer coupled to two adjacent harmonic chains. Application of Feyn-
man’s path instanton technique yields the tunneling splittingDE. For the isolated dimer we reproduce the
exponential factor for the splittingDE(0), obtained earlier by a perturbative approach. Assuming the frequency
v of the breather to be much larger than the inverse instanton width we use an adiabatic approximation to
deriveDE for the dimer coupled to the harmonic chains. We find thatDE can be obtained fromDE(0) just by
scaling the Planck constant. We argue that independent of the density of states of the harmonic chains
tunneling can never be suppressed, ifv is large enough.@S1063-651X~98!11407-1#

PACS number~s!: 05.30.2d, 03.20.1i, 63.20.Pw, 63.20.Ry
r
e
o

r
o
b
o

oo
t r

ic
a

th
th
il
m

th
a

e.
m
r-
b

ca
rth
ns
en

on
st

in
in-

n-
king
e

its
nce

.
d to
type
au-

re,
r is
tum
n-
cal
g in
spite

of
ri.

rier
can
ible

left
h a
I. INTRODUCTION

Initiated by early papers of Ovchinnikov@1#, Kosevich
et al. @2#, and Takenoet al. @3,4# there exists now a clea
understanding of the generic existence of discrete breath
These classical solutions to the Hamiltonian equations
motion are time periodic and spatially localized. They a
structurally stable provided the plane wave spectrum
small amplitude excitations has finite bounds. This can
achieved by considering a spatial lattice, with degrees
freedom associated to each lattice site. Existence pr
demonstrate that the existence of these solutions is no
stricted to low lattice dimensions@5#. ~For reviews on this
subject, see@6,7#.!

A logical step is then to consider the fate of these class
solutions in the presence of quantum fluctuations. We m
think about a quantum object corresponding to a brea
solution. Contrary to a classical breather, localized in
vicinity of a certain lattice site, such a quantum object w
be able to tunnel from site to site, forming a quantu
breather band. Taking into account the coupling of
breather to its environmental degrees of freedom m
strongly influence the tunneling probability amplitud
Therefore the central issue is to calculate the probability a
plitude of the breather intersite tunneling, which will dete
mine the width of the band. An interesting question may
whether such an effect, known for particle tunneling~see,
e.g., @8,9#! as tunneling suppression in the Ohmic case,
be observed for the quantum breathers as well. It is wo
while mentioning in this context that quantization of solito
~other nonlinear objects that are close but certainly differ
from breathers! was discussed in the literature; see, e.g.,@10#.
Tunneling of fluxons in Josephson junction chains~soliton
PRE 581063-651X/98/58~1!/339~8!/$15.00
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solutions of the sine-Gordon equation! interacting with plas-
mons was recently considered in@11#.

Since classical breathers can be localized essentially
one site~bond!, one can start by considering a system of ju
two sites ~bonds!, for example, the dimer discussed
@12,13#. Classical trajectories in this system may be not
variant under permutation of the sites~bonds!, whereas the
Hamiltonian is invariant. Quantization yields pairs of eige
states, corresponding to these classical symmetry brea
trajectories, with exponentially small splittings of th
eigenenergies.

This dimer model is particularly interesting, because
classical version is an integrable system, due to the existe
of two integrals of motion that are the total dimer energyE
and a measureJ for the intensity of the classical excitation
The pairs of eigenstates of the quantum dimer correspon
tunneling between tori in the classical phase space. This
of problem has already been studied earlier by several
thors~see, e.g.,@14,15#!. Two cases were considered that a
respectively, dynamical and potential tunneling. The latte
what one usually understands as tunneling, i.e., a quan
transition of a particle through a potential barrier in a co
figuration space that is energetically forbidden in classi
mechanics, whereas the former corresponds to tunnelin
the phase space where no such energy barrier exists. De
the absence of the energy barrier no classical solution
Newton’s equation of motion exist that connects the two to

In the case of the two tori that appear in@12,13#, as will
be shown in the next section, an effective potential bar
can be defined and the problem of dynamical tunneling
be mapped onto a potential tunneling. This becomes poss
since the dimer has two conservation laws. If we were
with just the energy conservation, we would be faced wit
339 © 1998 The American Physical Society
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340 PRE 58V. FLEUROV, R. SCHILLING, AND S. FLACH
proper dynamical tunneling again~see@16#!.
The tunneling splitting for all the levels of the dimer wa

calculated in Ref.@13#. However, to study a possible delo
calization of the classical breather due to quantum beha
one has to investigate an extended system. A step in
direction was made in the paper@16# where a dimer coupled
to a single harmonic oscillator was studied. A considerat
of an extended system with a macroscopic number of bo
is the principal aim of this paper, which will be organized
follows. The next section introduces an extended model w
N bonds and then shows that subdiving this chain into
dimer coupled to adjacent harmonic chains may be a g
approximation. Section III reinvestigates the isolated dim
classically and quantum mechanically, and uses Feynm
path integral method in order to derive the exponential fac
that mainly determines the tunneling splitting. The extend
model will be studied in Sec. IV, where the main result
our paper will be derived. The final section contains a d
cussion and some conclusions.

II. MODEL

We are going to consider the quantum tunneling o
breather in a one-dimensional chain described by the Ha
tonian

H5
v0

2 (
i

~pi
21xi

2!1
g

8(i
~pi

21xi
2!2

1C(
i

~xixi 111pipi 11!. ~2.1!

Here the labeli numbers the bonds. It will be assumed
what follows that the breather is strongly localized and c
responds actually to an excitation of only one bond in t
chain. Then tunneling will correspond to transferring th
excitation to a neighboring bond. Since all the other bon
remain lowly excited during this process we may neglect
corresponding anharmonic terms in Eq.~2.1!. However, the
anharmonicity in the two bonds participating in the tunneli
transfer will be fully taken into account. Then the proble
reduces to a consideration of tunneling in a dimer couple
a bath represented by two harmonic chains. The syste
described by the Hamiltonian

H5Hd1Hph1H1 , ~2.2!

where

Hd5 (
a51,2

Fv0

2
~pa

21xa
2 !1

g

8
~pa

21xa
2 !2G1C~x1x21p1p2!

~2.3!

represents the dimer of two bonds~chosen to be 1 and 2!,
which may be strongly excited. The bath is represented
the remaining part of the chain

Hph5
v0

2 (
nÞ1,2

~pn
21xn

2!1C (
nÞ0,1,2

~xnxn111pnpn11!

~2.4!
or
is

n
ds
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in which the anharmonic terms are omitted. The interact
between the dimer and the harmonic bath is given by

H15C~x0x11p0p11x2x31p2p3!. ~2.5!

The harmonic part~2.4! consists of two open ended ha
monic chains, each of which can be diagonalized by me
of the transformation

xn5(
m

H xm
LN m

L sin qm
L ~n21!, 2~NL21!<n<0

xm
RN m

R sin qm
R~n22!, 3<n<NR12

and

pn5(
m

H pm
LN m

L sin qm
L ~n21!, NL21<n<0

pm
RN m

R sin qm
R~n22!, 3<n<NR12.

The superscriptsL and R denote the left and right han
chains withNL andNR bonds, respectively. The wave num
bers qm

L 5pm/(NL21),m51, . . . ,NL , qm
R5pm/(NR

11),m51, . . . ,NR , and N m
L/R are normalization coeffi-

cients.
Equation~2.4! now reads

Hph5
1

2(m lm
L @~pm

L !21~xm
L !2#1

1

2(m lm
R@~pm

R!21~xm
R!2#,

~2.6!

where the eigenfrequencies arelm
L/R5v012C cosqm

L/R. The
interaction in the normal coordinates becomes

H15(
m

Cm
L ~x1xm

L 1p1pm
L !1Cm

R~x2xm
R1p2pm

R!, ~2.7!

whereCm
L 52CN m

L sinqm
L andCm

R5CN m
R sinqm

R .
The problem of breather tunneling reduces now to inv

tigating the tunneling transfer of an excitation from one bo
of the dimer to the other under the influence of the harmo
bath. On one hand this problem differs from the stand
problem of a particle tunneling between two minima in
double-well potential in the configuration space, since h
we deal with dynamical tunneling from one torus to anoth
in the phase space. On the other hand there are many s
larities in these two problems, which will be discussed
what follows.

III. TUNNELING IN THE DIMER

Tunneling in the dimer described by the HamiltonianHd
~2.3! was studied in detail in@12,13#. Here we try to ap-
proach the problem by means of the path integral techni
and obtain some results that will be necessary for our m
general problem.
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A. Classical properties

The canonical transformation

y5 1
4 @x2

21p2
22x1

22p1
2#,

w5arctan
p2

x2
2arctan

p1

x1
,

J5
1

2
@x2

21p2
21x1

21p1
2#,

x5
1

2S arctan
p2

x2
1arctan

p1

x1
D ~3.1!

allows one to represent the dimer Hamiltonian~2.3! in the
form

Hd5v0J1gS J

2D 2

1gy212CAS J

2D 2

2y2cosw.

~3.2!

Herey andJ play the roles of the coordinates whilew andx
are the corresponding momenta. The HamiltonianHd does
not depend on the momentumx, which means that its con
jugate coordinateJ is one of the two integrals of motion. Th
following restrictions should be also applied:uyu,J/2 and
uwu,p/2.

The second integral of motion is the total energyE. Since
the Poisson bracket ofJ andHd vanishes, the dimer model i
integrable. The momentumw is excluded from the Hamil-
tonian equations of motion by means of the energy con
vation and the equation

ÿ52
dV~y!

dy
~3.3!

is obtained, which describes motion along the coordinatey at
a given energyE in the potential

V~y!5
g2

2
y42gFE2v0J2gS J

2D 2

22
C2

g Gy2. ~3.4!

Note that the motion described by Eq.~3.3! is not exactly
the same as the motion of a particle in a usual double-w
potential. The difference is due to the fact that the two in
grals of motion, the conserved total energyE of the dimer
and the amplitudeJ, play now the role of parameters. Thu
the shape of the potentialV(y) depends explicitly onE and
J, which is a consequence of dealing with the dynamics
the four-dimensional phase space of the dimer.@This is a
general property of an integrable system with two degree
freedom and a separatrix that separates symmetry nonin
ant from symmetry invariant trajectories. The Hamiltonian
assumed to be invariant under the discrete symmetry op
tion P with P251. The two actionsJ1 andJ2 in one of the
symmetry broken phase space regions parametrize the
lated periodic orbits (J1) and its quasiperiodic perturbation
J2, wherev25]H/]J2 vanishes on the separatrix. Perform
ing now a canonical variable transformatio
$J1 ,J2 ,f1 ,f2%→$J1 ,z,f1 ,pz% will lead to a Hamiltonian
r-

ll
-

n

of
ri-

ra-

o-

H(J1 ,z,pz). Fixing J1 ~which is the boson number in ou
case! leads to an effective one-particle problem. This ca
can be finally always described by an effective potent
which will depend on both the total energyH and the chosen
value for the actionJ1.#

Multiplying Eq. ~3.3! by ẏ it follows that the quantity

Et5
1
2 ẏ21V~y!52 1

2 ~E2E1!~E2E2!

with

E15v0J1gJ2/41CJ, E25v0J1gJ2/42CJ ~3.5!

does not vary in time.Et plays the role of the effective en
ergy for the motion described by Eq.~3.3!. Note thatEt does
not coincide with the real energyE of the dimer. They are
even measured in different units.

The potential~3.4! becomes a double-well potential if th
coefficient of they2 term is negative. In order to have
permutation symmetry breaking trajectory the condition

0.Et>2
1

2FE2v0J2gS J

2D 2

22
C2

g G2

has to be satisfied.
It follows from Eq. ~3.2! that for gJ<2C the choice of

the possible energies is restricted by the conditions

E1>E>E2 , ~3.6!

which implies thatEt is positive in this case. Then onl
symmetry conserving periodic trajectories are possible.
gJ52C a bifurcation occurs, and forgJ.2C the energy
rangeE1,E,E35v0J1gJ2/21C2/g becomes accessibl
to permutation symmetry broken trajectories. These are
conditions for an appearance of permutation symmetry b
ken isolated periodic orbits as described in Ref.@13#.

A permutation symmetry broken trajectory means that
system dwells in one of the two wells of the potential~3.4!.
Now we are able to consider tunneling from one minimum
the potentialV(y) to the other one applying the standa
formulation of the instanton technique in the path integ
approach. This will be done first for the isolated dimer a
then for the dimer interacting with the bath.

B. Quantum properties

The amplitude of the tunneling transition in the potent
V(y) can be found by calculating the phase space path i
gral @17#
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Z5E D@y#E D@w#E D@J#E D@x#expH i

\E2T/2

T/2 F2J~ t !ẋ~ t !2y~ t !ẇ~ t !1S@y~ t !,w~ t !,J~ t !,x~ t !# G J , ~3.7!

where

Sd@y~ t !,w~ t !,J~ t !,x~ t !#5S2~T/2!2S2~2T/2!1S1~T/2!2S1~2T/2!1S̄d ,

S̄d52E
2T/2

T/2

Hd„y~ t !,w~ t !,J~ t !…dt ~3.8!

and

S6~ t !5 1
4 @J~ t !62y~ t !#sin@2x~ t !6w~ t !#.

Note that in contrast to the usual phase space path integral representation, we have performed a partial integrat
exponent. Choosing the dimer energyE5E3 we may consider the tunneling motion between the two minima of the pote
V(y) located aty656AJ2/42C2/g2. This means that the integral in the action~3.8! should be calculated using the conditio
that y(T/2)5y(2T/2)5y1 or y2 and J(T/2)5J(2T/2)5J0. For gJ0.2C the value ofJ0 ~integral of motion for the
classical paths! characterizes the particular tunneling process. This procedure corresponds to calculating the splitting du
phase space tunneling between the two isolated periodic orbits

y656AJ0
2/42C2/g2, w50, J5J0 , x52~v01gJ0!t. ~3.9!

SinceHd does not depend explicitly onx, the path integration overx and then overJ can be carried out straightforwardly
One can see from this integration that only the paths along whichJ(t)[J0 contribute to the integral~3.7!. Then keeping only
the terms relevant to tunneling one obtains

Z;E D@y#E D@w#expH i

\F2E
2T/2

T/2

y~ t !ẇ~ t !2Hd@y~ t !,w~ t !,J0#G J . ~3.10!
th
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Switching to the imaginary time,t52 i t, one finds forT
→` the well-known instanton for the potential~3.4! with E
5E3:

y~t!5AJ0
2

4
2

C2

g2
tanhH gtAJ0

2

4
2

C2

g2J , ~3.11!

corresponding to the imaginary time solution of Eq.~3.3!.
Then the tunneling splitting becomes

DE;e2~1/\!SE, ~3.12!

where the Euclidean action is calculated with the help of
instanton~3.11!,

SE52AJ0
224C2/g21J0lnS 2Cg

gJ02Ag2J0
224C2D .

Comparing this result with the results obtained in@12,13#
by the perturbation theory approach by taking into acco
that J0 has to be replaced by its quantized valueJ0
5n\, n50,1,2, . . . , we findthat they coincide up to the
preexponential factor. The latter can be found by prope
accounting for the quantum fluctuations in the above p
integral. Unfortunately, the action~3.8! contains a kinetic
term proportional to cosw, rather than a quadratic form
e

t

y
h

which complicates the calculation of the quantum fluctu
tions. Nevertheless, while considering tunneling of a breat
interacting with the harmonic bath we will be able to arri
at a certain conclusion concerning this preexponential fa
as well.

IV. BREATHER IN THE 1D CHAIN

A. Classical properties

In order to consider tunneling in the 1D chain describ
by the Hamiltonian~2.2! we study some of its classical prop
erties first. To be more specific we need to find isola
periodic orbits between which the quantum phase space
neling occurs. This can be achieved by applying the sa
trick as in Refs.@13,16#. The system has two integrals o
motion one of which is the total energy, i.e., the Hamiltoni
itself, and the second one is the quantity

B5
1

2 (
i 52NL

NR

~pi
21xi

2!.

Hence, we can find isolated periodic orbits by using the c
dition ¹H5v¹B in the phase space. This condition direct
leads to the equations
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xm
L/R5

Cm
L/R

v2lm
L/R

x1/2,

pm
L/R5

Cm
L/R

v2lm
L/R

p1/2,

which allow one to eliminate the bath coordinates. Then
plying also the canonical transformation~3.1! and assuming
that the left hand chain is identical to the right hand cha
one finds isolated periodic orbits in the form

y656AJ0
2/42C2/g2, w50, J5J0 , x52vt

~4.1!

with v defined by the equation

v01gJ01(
m

2Cm
2

v2lm
5v. ~4.2!

Comparing this solution with Eq.~3.9! we find that it has
the same structure as for the isolated dimer and only
-

,

e

coefficient in the linear time dependence of the momentumx
is now renormalized due to the interaction with the bath. W
also obtain the energy

E5E312J0(
m

~2v2lm!
Cm

2

~v2lm!2

of the system corresponding to such an isolated orbit. It c
tains two terms corresponding to the dimer and all the oth
bath, degrees of freedom separately. It is interesting to n
that the energyE3 of the dimer is also a conserved quantit
meaning that when moving along this orbit there is no e
change of energy between the dimer and the remaining
of the chain.

B. Quantum properties

Now we will consider how the interaction with the ha
monic bath influences the tunneling in the dimer between
two isolated orbits~4.1! found in the previous subsection
Let us calculate the path integral
in Eq.
Z5)
m

E
2`

`

dx0m
L E

2`

`

dx0m
R E D@xm

L ~ t !#E D@pm
L ~ t !#E D@xm

R~ t !#E D@pm
L ~ t !#E D@y~ t !#E D@w~ t !#E D@J~ t !#E D@x~ t !#

3expH i

\E2T/2

T/2

dtF2(
m

~ ẋm
L pm

L 1 ẋm
Rpm

R!2Jẋ2yẇ1S@y,w,J,x,$xm
L %,$pm

L %,$xm
R%,$pm

R%#G J , ~4.3!

where

S@y,w,J,x,$xm
L %,$pm

L %,$xm
R%,$pm

R%#5S2~T/2!2S2~2T/2!1S1~T/2!2S1~2T/2!1S̄,

S̄52E
2T/2

T/2

H„y~ t !,w~ t !,J~ t !,$xm
L ~ t !%,$pm

L ~ t !%,$xm
R~ t !%,$pm

R~ t !%…dt ~4.4!

with the HamiltonianH defined by Eq.~2.2!. The action~4.4! is calculated using the conditions thatxm
L (2T/2)5xm

L (T/2)
5x0m

L andxm
R(2T/2)5xm

R(T/2)5x0m
L , all other conditions being the same as in the case of the isolated dimer. Note that

~4.3! we have taken the trace with respect tox0m
L andx0m

R .
Integration over the harmonic coordinates is straightforward and the propagator~4.3! becomes~see, e.g.,@18#!

Z5Z̃E D@y~ t !#E D@w~ t !#E D@J~ t !#E D@x~ t !#

3expH i

\E2 T/2

T/2

dt@2Jẋ2yẇ#1S̄d@y,w,J#1SL@y,w,J,x#1SR@y,w,J,x#J , ~4.5!

whereS̄d is given by Eq.~3.8! and

SL,R@y,w,J,x#5E
2T/2

T/2

dtE
2T/2

T/2

dt8AAL,R~ t !AL,R~ t8!@KL,R~ t2t8!coscL,R~ t,t8!1LL,R~ t2t8!sin cL,R~ t,t8!# ~4.6!
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with

KL,R~ t !5
1

2(m ~Cm
L,R!2

coslm
L,R~T/22utu!

sin lm
L,RT/2

and

LL,R~ t !5
1

2
sgn~ t !(

m
~Cm

L,R!2
sin lm

L,R~T/22utu!

sin lm
L,RT/2

.

Here

cL,R~ t,t8!5x~ t !2x~ t8!7 1
2 @w~ t !2w~ t8!#,

AL,R~ t !5J~ t !/26y~ t !;

Z̃ is the factor due to all the integrations carried out in E
~4.5!. It also includes terms containingS6(6T/2). A de-
tailed knowledge ofZ̃ is not important for calculation of the
tunneling splitting.
its
n

g
s

.

The action in the propagator~4.5! is rather complicated
and is far from being a quadratic form. It contains also no
local terms SL,R@y,w,J,x# due to the interaction of the
breather with the phonon bath. Their structure, although
sembling in many aspects the nonlocal terms in the stand
potential tunneling problems~see, e.g.,@8,19#!, is now some-
what more complicated. On one hand this is due to the
that the integrations over the momenta have not been ca
out. On the other hand the very formulation of the problem
different. There is an additional pair of conjugated coor
natesJ and x, which is important when considering th
phase space tunneling. Also we have an additional restric
J(T/2)5J(2T/2)5J0, to be taken into account.

C. Adiabatic approximation

A direct calculation of the path integral seems hardly p
sible unless some approximations are used. In order to
derstand what sort of an approximation can be appropr
here, we need to analyze the equations of motion for
dimer coordinates and momenta that can be obtained
minimizing the action in Eq.~4.5!:
ẏ2
]Hd

]w
1E

2T/2

T/2

dt8AAL~ t !AL~ t8!@KL~ t2t8!sin cL~ t,t8!2LL~ t2t8!coscL~ t,t8!#

2E
2T/2

T/2

dt8AAR~ t !AR~ t8!@KR~ t2t8!sin cR~ t,t8!2La~ t2t8!coscR~ t,t8!#50, ~4.7!

ẇ1
]Hd

]y
2E

2T/2

T/2

dt8AAL~ t8!/AL~ t !@KL~ t2t8!coscL~ t,t8!2LL~ t2t8!sin cL~ t,t8!#

1E
2T/2

T/2

dt8AAR~ t8!/AR~ t !@KR~ t2t8!coscR~ t,t8!2LR~ t2t8!sin cR~ t,t8!#50, ~4.8!

J̇22E
2T/2

T/2

dt8AAL~ t !AL~ t8!@KL~ t2t8!sin cL~ t,t8!2LL~ t2t8!coscL~ t,t8!#

22E
2T/2

T/2

dt8AAR~ t !AR~ t,!@KR~ t2t8!sin cR~ t,t8!2LR~ t2t8!coscR~ t,t8!#50, ~4.9!

ẋ1
]Hd

]J
2

1

2E2T/2

T/2

dt8AAL~ t8!/AL~ t !@KL~ t2t8!coscL~ t,t8!2LL~ t2t8!sin cL~ t,t8!#

1
1

2E2T/2

T/2

dt8AAR~ t8!/AR~ t !@KR~ t2t8!coscR~ t,t8!2LR~ t2t8!sin cR~ t,t8!#50. ~4.10!
First of all we observe that the isolated periodic orb
found in Sec. IV A are solutions of the equations of motio
By substituting one of these isolated orbits, correspondin
say they1 minimum, one obtains the nonlocal action term
in the form

SL,R@y,w,J,x#5AL,RE
2T/2

T/2

dtE
2T/2

T/2

dt8K̃L,R~ t2t8!

~4.11!
.
to

where the kernel reads

K̃L,R~ t !5
1

2(m ~Cm
L,R!2

cos@lm
L,R~T/22utu!2vutu#

sin lm
L,RT/2

~4.12!

andAL5J0/21y1 , AR5J0/22y1 .
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This kernel is similar to the kernels encountered in
standard configuration space tunneling problems~see, e.g.,
@8,19#! except for the additional termvutu in the argument of
the cosine function. This term ensures a rapid converge
of the integral~4.6! regardless of the phonon density of sta
providedv is large enough compared tolm

L,R , which can be
achieved ifgJ0.2C, which is the condition for the very
existence of the breather in our system. It should be m
tioned, in particular, that the internal breather frequencyv in
the kernel makes the logarithmic divergency of the act
appearing in the so-called Ohmic case for particle tunnel
as described in@8#, impossible.

The frequencyv characterizes the isolated periodic orb
Any motion with smaller frequencies can be considered
slow and an adiabatic approximation may be appropriate
such a case. This holds in particular for the instanton solu
~3.11! of equations~4.7!–~4.10! ~if rewritten in the imagi-
nary time! and such an adiabatic approximation may be u
when analyzing the phase space tunneling problem as w
A more detailed discussion of the applicability of this ad
batic approximation is given in the next section.

The rapid convergency of the integrals in the nonlo
terms of the action ensures that the main contribution is c
ing from t2t8 being small. Thus the dependence of t
dimer coordinates ont8 can be approximately represented

J~ t8!5J~ t !1 J̇~ t !~ t2t8!1•••,

y~ t8!5y~ t !1 ẏ~ t !~ t2t8!1•••,

w~ t8!2w~ t !5ẇ~ t !~ t2t8!1•••,

x~ t8!2x~ t !52v~ t2t8!1dẋ~ t !~ t2t8!1•••.
~4.13!

This expansion is substituted into the action in the expon
of Eq. ~4.5! and integration overt8 is carried out in the limit
T→`. Keeping the leading terms of the expansion the ad
batic approximation for the action is obtained

Sad5E
2`

`

dt$J~ t !~v1M0!2J~ t !~11M1!dẋ~ t !

2y~ t !~11M1!ẇ~ t !2Hd@y~ t !,w~ t !,J~ t !#%,

~4.14!

where

M05(
m

Cm
2

lm2v
~4.15!

and

M15(
m

Cm
2

~v2lm!2
. ~4.16!

Now all the terms in the action~4.14! are local and it can
be directly compared with the results obtained for the i
lated dimer. Actually we have now to calculate the propa
tor ~3.7! using this new action. First the integration ov
e

cy
s

n-

n
g,

s
in
n

d
ll.

-

l
-

nt

-

-
-

dx(t) again yields only the paths withJ(t)[J0. Then
changing integration variables,t̃ 5t/(11M1), in the remain-
ing part of the action one obtains the propagator in the fo
~up to factors irrelevant to tunneling!

Z;E D@y~ t̃ !#E D@w~ t̃ !#expH 2
i ~11M1!

\

3E
2`

`

d t̃†y~ t̃ !ẇ~ t̃ !2Hd@y~ t̃ !,w~ t̃ !,J~ t̃ !#‡J . ~4.17!

The propagator~3.10! can be transformed into the propa
gator ~4.17! by scaling the Planck constant\→\/(11M1).
This means that the splittings of the quantum breather le
due to tunneling in the chain can be obtained from the sp
ting found for the isolated dimer just by the same scaling

V. DISCUSSION

We have studied the tunneling of a localized breather
citation in a chain of particles due to quantum fluctuatio
For this purpose we used an extended version of a di
model. The original dimer model was recently investigat
classically and quantum mechanically@12,13#. Assuming
that the breather is mainly localized on one bond, we
placed all the bonds by harmonic ones, except for two
them, thus allowing for tunneling from one bond to the oth
under the influence of the remaining harmonic bonds.

For the isolated dimer, i.e., when the harmonic chains
their coupling to the dimer are removed, we have applied
path integral technique and reproduced the result for the
neling splittingDEn

(0) obtained earlier within a perturbativ
approach. This agreement has been achieved for the e
nential factor, which represents the main contribution
DEn

(0) . Taking the interaction with the harmonic chains in
account we have calculated the propagator by use of an a
batic approximation. The result~4.17! allows us to find an
equation for the probability amplitude of the breather tunn
ing in the chain if we know the probability amplitude for th
isolated dimer. For example, we may use Eq.~1.10! in Ref.
@12# ~a more general derivation can be found in@13#! derived
perturbatively for the isolated dimer. The quantum numb
n5J/\ is the number of bosons that comprise the breathe
is the only parameter in this equation containing the Pla
constant\. Applying the above scaling one arrives at th
amplitude for a breather tunneling in the chain,

DE5
2ñC

~ ñ21!!
S C

g D ñ21

, ~5.1!

where ñ5J(11M1)/\. For large values ofñ the Stirling
formula results in

DE'
2ñC

Añ21
expH 2~ ñ21!ln

~ ñ21!g

eC
J . ~5.2!

It is readily seen that the interaction with the bath diminish
the exponential factor due to the increase of theñ with re-
spect ton (M1 is always positive!. This is the same type o
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behavior as predicted in@20# for the influence of the bath on
the configuration space tunneling.

Here we comment again on the quality of our adiaba
approximation. The nonadiabatic corrections in the act
~4.14! are proportional to the quantityM1, Eq. ~4.16!, which
for v@max$lm%5v012C can be estimated a
M1;C2/v2!1. Direct analysis of the adiabatic expansi
~4.13! shows that the next order terms in the action~4.6!
will contain additional powers of the ratiov inst/v. From Eq.
~4.2! one finds that the breather frequencyv is always larger
than gJ0. Therefore, the frequency, v inst5

gJ0/2A124C2/g2J0
2, typical of the instanton is smaller tha

the breather frequency at least by a factor of 2. It may
come especially small near the bifurcation point, wh
2C/gJ0 is close to one. Hence, we expect the adiabatic
pansion to be quite reasonable if the instanton freque
v inst is small enough compared to the breather frequencyv.

It has been shown for the configuration space tunne
that the behavior of the density of states of the harmonic b
for frequencies close to zero strongly influences this ren
malization. In the Ohmic or sub-Ohmic case the coupling
the bath may lead to a suppression of tunneling@9#. This
effect, however, does not occur for the phase space tunne
of the breather for our model Hamiltonian~2.2!–~2.7! even if
the phonon density of states corresponds to the Ohmic c
The reason for this can be seen from the nonlocal kerne
adiabatic approximation,~4.12!. Choosing T such that
Tv/252pn with n being a positive integer the argument
er

.

c
n

-
n
-
y

g
th
r-
o

ng

se.
in

the cosine in Eq.~4.12! can be rewritten as (lm
L,R2v)(T/2

2utu). Since the breather frequencyv.0 must be larger
than the upper edge max$lm%5v012C of the phonon band,
there will be a gap, meaning thatlm

L,R2v never becomes
zero. Consequently, the coupling to the phonon bath res
in an interaction between the instantons that decays expo
tially with ‘‘distance’’ ut2t8u ~wheret is the position of an
instanton! and not as a power law;ut2t8u22 as is the case
for the Ohmic damping@9,8,19#.

The occurrence of this gap is related to the fact that
breather itself already has its own nonzero frequencyv.
Since this will also be true for breathers in quite differe
types of models, e.g., where no anharmonic terms with
spect to the momenta exist, we may speculate that tunne
of a breather cannot be generally suppressed even in
Ohmic or sub-Ohmic cases.

Finally, we want to emphasize that the existence of ma
boson bound states has been obtained rigorously only
integrable models. Although our present calculation is no
proof of existence of bound states in the semiclassical lim
the finding that the tunneling in the dimer is reduced wh
considering an infinite chain, yields the right trend to conn
these bound states to classical breather solutions.
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